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POTENTIAL ENERGY OF MAGNESIUM
ATOM-HYDROGEN MOLECULE INTERACTION AND
INTERDIFFUSION COEFFICIENT

K. M. Aref’ev, N. B. Balashova,
A. V. Zhilin, and N. V. Vinogradova

The potential energy of intermolecular interaction is calculated hy the quantum-mechanical e¢xchange
perturbation theory. The results are used to calculate the diffusion coefficient for magnesium vapor in
hydrogen. The calculations agree with the experimental resulls.

For subsequent calculation of the transfer cocfficients, the potential energy of intermolecular interaction at
medium and large intermolecular distances can be calculated using the quantum-mechanical exchange perturbation
theory (EPT) {1-3]. In this theory, the approximate Schrodinger equation includes (by the antisvmmetrization
operator of the wave function of the system) the effect of weak overlap of electron shells at medium intermolecular
distances. The overlap results in exchange interaction satisfying the Pauli cxclusion principle for the electron
distribution over the molecular orbitals. At large intermolecular distances the overlap of the shells disappears and
the EPT coincides with the standard Rayleigh-Schrodinger perturbation theory, which results in polarization
(dispersion for nonpolar molecules) interaction [ .

The authors of [4] give EPT results in a version {3] of the potential energy of the interaction betwecen
alkali and alkali-earth metal (magnesium included) atoms and helium atoms. In this case the interaction of valence
electrons of metal atoms (one electron for alkali metals and two electrons for alkali-earth metals) with two electrons
of a helium atom were explicitly taken into consideration. The effect of electrons from the metal-atom skeleton was
included, using the pseudopotential method [5, 6]. Unsold’s approximation [7] was used in calculations of
exchange-polarization and polarization interactions. The approximation consisted in introduction of the average
effective energy of excited states. The potential interaction energies estimated by the EPT method agree with the
values reported in the literature (found by complete nonempirical and semiempirical quantum-mechanical
calculations).

The dependences of potential encrgy on the interatomic distance calculated within EPT are used in
calculation of the interdiffusion coefficients of metal vapor (superheated metal vapors are almost monoatomic [9 ]
in helium within the Enskog—Chapman theory [8]. The calculated diffusion coefficients for magnesium vapor in
helium agree with experimental values [10] found with Stefan’s method (i.e., with the coefficients found from the
rate of evaporation of metal into gas). The calculated diffusion coefficients for alkali metals in helium also agree
with experimental data. From experimental data on evaporation of barium into helium, the pressure of saturated
barium vapor (the vapor is saturated at the evaporation surface) as a function of temperature is found using a
diffusion formula [8 ] and the potential energy calculated within EPT. The specified approximation formula for the
found pressure values lying in the range of pressures reported in the literature [11-13] is given in [14 ] together
with a formula for the diffusion coefficient.

We used the same EPT method in a version (3 ] for calculation of the potential energy of interaction between
magnesium atoms and a biatomic hydrogen molecule (just as in (4], the ground state of the system is meant) . In

* Excited states of interacting atoms or molecules are included in calculation of exchange-polarization and

polarization energies.
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Fig. 1. Diagram of atoms and clectrons in Mg-H» system: «, metal atom; b

and ¢, hydrogen atoms in H; molecules; | and 2) electrons of hydrogen atom;
3 and 4) valencce electrons of metal atom; r, (n = 1, 2, 3, 4), electron
coordinates; m, center of mass of Hy molecules; R, distance between atom «
and point m.

this case the calculation is substantially complicated in view of the fact that apart from the distance R (in [4] the
internuclear distance, and now in the casc of interaction with hvdrogen, the distance between the nucleus of the
metal atom and the center of mass of the biatomic Hy molecule), one more parameter aonears. This is the angle 6
determined by the direction of collision (Fig. D). In the ground state of the Hy molccule the distance between the

hydrogen nuclei is 1.4 atomic units. The electron wave function of the hydrogen molecule was written following
Heitler—London [1}
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In the above expression y; and y,. are spatial wave functions of the electrons on hydrogen atoms 6 and ¢ (Fig. 1);
a and B are spin electron functions with opposite spin orientations; S = [ yu(1)yp(1)d7, is the overlap integral of
the electron centered on hydrogen atoms b and c. Just as in other similar integrals of quantum mechanics,
integration in this interval is carried out over the entire space; dr is an element of the space of this electron marked
by number 1. As usual, the numbers in parentheses in the space and spin functions indicate the space or spin
coordinates of electrons in the adopted numbering.

Depending on the radius r (atomic units), the space function of the electron of the hydrogen atom b or ¢
with reference points at the atomic nucleus has the form

w=1/Va exp (-r).

In calculations this Sleuter type function was approximated by a sum of Gaussian functions in which r is
replaced by r with the appropriate coefficient in the exponent. The same pseudopotentials and the corresponding
wave pseudofunctions of valence electrons were chosen as in {4].

According to [3) the potential energy of intermolecular interaction is expressed as a series

o Ry = E'O 4 ' 4 g0 4 gD

where the first superscript of the energy components EY%) means the order of approximation along the perturbation
operator and the second superscript is the same along the overlag integrals of valence electrons (in the present case,
of magnesium and hydrogen atoms). In the series it is sufficient o take only the term of the exchange-polarization
energy E??) The other terms of the series, namely, E“O), E(m, and EGO express electrostatic, exchange, and
polarization (dispersion) energies, respectively.

The initial Schrodinger equation written in a Born—Oppenheimer approximation of stopped atomic nuclei
includes the Coulomb energies of attraction of electrons of one molecule (or atom) to nuclei of another, repulsion
of electrons, and repulsion of nuclei of different molecules. For the Mg-H, system, the perturbation operator has
the form (in atomic units, a.u.):

455



4
75+
¥
60 t
50
40 +
20t ¢
0
|
| 0t 2/
) |
) 40
Fig. 2. Potential intcraction energy ¢ Mg-11p (a.u. X 10%) (clectrostatic and
exchange) following the exchange perturbation theory versus intermolecular
distance R {a.u.); Dee (R); 2) pey (R).
Fig. 3. Total angle-averaged potential intcraction energy ¢ (a.u. X 107%) of
Mg-H, versus intermolecular distance R (a.u)): 1) ¢ (R) from formula (2);
2) polarization energy ngg'uz/Rb; 3) §(R) from formula (3); 4) P(R), total
from formula (4). ’
oy TS Ly M
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where, as in Fig. I, subscript a refers to the metal atom and subscripts b and ¢, to hydrogen atoms in the hydrogen
molecule. For magnesium N, =2, Z, =2 (skeleton charge) and for hydrogen Ny + N, = 2. The electron coordinates
(radii) ryj, rp;, and r. have reference points at the nuclei of the metal (a) and hydrogen (b and ¢), rgp is the
distance between k and m electrons (for magnesium in the double sum M = 4), Ry, and R, arc the distances from

the nucleus of the metal atom to the nuclei of the hydrogen atoms, U(ry;) is the pseudopotential of the j valence
electron of the metal.

The sums of electrostatic and exchange interaction cnergies EUO 4 g2 - ¢'(R) calculated for the Mg-

H, system are shown in Fig. 2 versus the distance R at two values of the angle 6 = 0 (Cw, symmetry) and 6

= /2 (Cy, svmmetry). In Fig. 3 one can sce a curve of the angle 8-averaged ¢'(R) in accordance with the
formula

/2 T/ 2

- v . . - - .-1_ ' z i .
7 (R) = g ¢ (R, 6)sin 646 / {sm 6d8 = 5 p (R) + S pc, (R), (2)

obtained by integration of (R, 8) for Li-H; interaction from results of complete nonempirical quantum-mechanical
calculations [15].

It should be also borne in mind that H; molecules rotate around the instantaneous axis that passes through
the center of mass perpendicularly to the straight line connecting the hydrogen nuclei (which, in turn, undergo
vibrations). Each rotational degree of freedom (a biatomic molecule has two degrees of freedom in accordance with
the two angles determining the position of the instantaneous rotational axis) has, on the average, 1/2kT energy,
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Fig. 4. Plot of PDy> (N/sec) versus temperature 7 (K); dots) cxperiment;
solid curve) EPT calculation; dashed curves) #109% deviation from
calculation; dot-dash curves) =189, sprcad of experimental points.

which, with the moment of inertia of the molecule known, determines the average frequency of rotation. In addition,
H, molecules can be rotated by the action of a colliding atom |16 ]. Thus, the question of the most correct averaging
of the potential energy of interaction between the atom and H; molecule (or any other biatomic molecule) is
complicated and has not been answered completely. However, in the present case pc (R, 0) and PCy R, /2)
are not very large (Fig. 2) as regards the effect of collisions on the values of the integrals and averaging (2) can
be considered sufficient for the required accuracy of results.

In the present EPT calculations for the Mg-H, system, the sum of the polarization and exchange-
polarization energies E®0 4 (2D = ¢ (R) was not determined directly (unlike the calculations in [4] for the
Mg-He system). We used calculation results of [4] with approximate scaling

—_ —_ ) ~Mg-H Mg-He
Prg-H, (R) = Pyg-ne (R) Cg 2/Cq - 3

The constant Cg determines the first largest term (instantaneous-dipole-induced interaction) of the
polarization attraction energy C(,/R6 in a multipole expansion. For the systcm of magnesium and helium atoms
C'glg‘He =22 a.u. [17], but for the system of a magnesium atom and a hydrogen molecule the values of the analogous
constant are not given. The Sleuter—Kirckwood formula can be used to estimate the angle-averaged C?fg‘ﬂz =
73.5 a.u. Results of calculations from formula (3) are given in Fig. 3. In the same figure one can see a curve of the
angle-averaged potential energy of interaction between a magnesium atom and a hydrogen molecule

FR =9 (R) +7 (R). (4)

In the range of up to R = 8 a.u. as a maximum, the cnergy @(R) cooresponds to repulsion. Attraction
occurs at larger intermolecular distances and the estimated depth of the potential well (corresponding to
equilibrium of repulsion and attraction) does not exceed several Kelvins (in temperature units). Thus, for
calculation of interdiffusion coefficients, the potential energy p(R) can be approximated by the Born well-less

repulsion potential

(R)=Bexp (= R/p), (5)

where B and p are constants. Tables of collision integrals for this model potential are given in [18]. The products
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calculated with such an approximation and using the formula of a first approximation in the
Enskog—Chapman kinetic theory for a mixture of uniatomic magnesium—hydrogen vapor are given in Fig. 4
together with experimental points. Experiments were carried out by Stefan’s method on an experimental device
described in [10, 19]. An alundum crucible with an internal diameter and height of about 17 and 34 mm,respectively
(crucibles with a height of 65 mm were also used), was used as a diffusion cell. A melted (by heating) wcighed
amount at magnesium (a cvlinder 5—10 mm high, shaped to fit the diameter of the crucible) was placed on the
bottom of the crucible. The top section of the crucible was blown by hydrogen. Under the conditions of the
experimental facility used, the hydrogen flow rate was 50— 120 liter/h. This resulted in a more than one-hundred-
fold decrease in the magnesium concentration at the crucible edge as compared with saturation at the cvaporation
surface. Meanwhile, no marked acrodynamic vortex appeared at the throat of the crucible. In the experiments
the tempcrature ranged from 940 to 1230 K. The furnace was thermostated by an automatic control unit within
3-6° The total pressure was close (o atmospheric pressurc (the product Dy is independent of pressure).
Depending on the set temperature, the experiment duration varied from 0.5 to 2 h, and was 4 h in onc case,
and in that this case 30 to 200 mg of magnesium evaporated. The loss of magnesium mass was determined by
weighing the crucible before and after the experiment within 0.1 mg. In this case a correction was introduced
for evaporation during heating and cooling of the diffusion cell, which was cstablished by special experiments
without maintaining stecady-state conditions. When results were processed with Stefan’s formulfa [10], and the
pressure of saturated magnesium vapor was determined with the data of [9]. The total spread of experimental
values was occassionally =189%,. However, it should be borne in mind that the experiments carried out at lower
temperatures seem unreliable, because incompletely decomposed compounds with hydrogen [20] or admixtures
in the gas can be formed on the magnesium surface. This can prevent evaporation of magnesium. In experiments
on magnesium diffusion in inert gases (helium and argon) [10], the spread of experimental points was within
+10% with the exponent n = 1.73 in the temperature dependence.

In Fig. 4 one can see that the PDi; curve calculated by the EPT method agrees with the results of
experiments carried out at higher temperatures with a spread within £109%,. For the calculated curve the exponent
in the temperature dependence PDj; = PD?Z(T/TO)" is 1.75. Temperature Tq is assumed to be 1030 K and the
product of the total pressure by the diffusion coefficient is PD?z = 01.0 N/sec at the given temperature.

NOTATION

P, total pressure of gas mixture; Dy, interdiffusion coefficient of binary mixture; &, Boltzmann constant;
T, absolute temperature; mj,, dimensionless mass of two molecules; Qﬂ‘z R o%zQﬂxz“) , diffusion cross-section
determined by collision integral; n, exponent in the temperature dependence of diffusion coefficient.
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